

Distance antimagic labeling of join and corona of two graphs

A.K. Handa, Aloysius Godinho, T. Singh \& S. Arumugam

To cite this article: A.K. Handa, Aloysius Godinho, T. Singh \& S. Arumugam (2017) Distance antimagic labeling of join and corona of two graphs, AKCE International Journal of Graphs and Combinatorics, 14:2, 172-177, DOI: 10.1016/j.akcej.2017.04.003

To link to this article: https://doi.org/10.1016/j.akcej.2017.04.003

Â © 2017 Kalasalingam University.
Publishing Services by Elsevier B.V.

Published online: 10 Jun 2020.

Submit your article to this journal

Article views: 130

View related articles

View Crossmark data 〔

Citing articles: 1 View citing articles

Distance antimagic labeling of join and corona of two graphs

A.K. Handa ${ }^{\text {a }}$, Aloysius Godinho ${ }^{\text {a,* }}$, T. Singh ${ }^{\text {a }}$, S. Arumugam ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar-403726, Goa, India
${ }^{\mathrm{b}}$ National Centre for Advanced Research in Discrete Mathematics, Kalasalingam University, Anandnagar, Krishnankoil-626126, Tamil Nadu, India

Received 1 March 2017; accepted 19 April 2017
Available online 19 May 2017

Abstract

Let G be a graph of order n. Let $f: V(G) \longrightarrow\{1,2, \ldots, n\}$ be a bijection. The weight $w_{f}(v)$ of a vertex v with respect to f is defined by $w_{f}(v)=\sum_{x \in N(v)} f(x)$, where $N(v)$ is the open neighborhood of v. The labeling f is said to be distance antimagic if $w_{f}(u) \neq w_{f}(v)$ for every pair of distinct vertices $u, v \in V(G)$. If the graph G admits such a labeling, then G is said to be a distance antimagic graph. In this paper we investigate the existence of distance antimagic labelings of $G+H$ and $G \circ H$. © 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Distance antimagic labeling; Arbitrarily distance antimagic labeling; Distance magic labeling

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected graph without loops, multiple edges or isolated vertices. For graph theoretic terminology we refer to West [1].

Most of the graph labeling methods trace their origin to the concept of β-valuation introduced by Rosa [2]. For a general overview of graph labeling we refer to the dynamic survey by Gallian [3].

Let G be a graph of order n. Let $f: V(G) \longrightarrow\{1,2, \ldots, n\}$ be a bijection. The weight $w_{f}(v)$ of a vertex v is defined by $w_{f}(v)=\sum_{x \in N(v)} f(x)$. The labeling f is said to be distance antimagic if $w_{f}(u) \neq w_{f}(v)$ for every pair of vertices $u, v \in V(G)$. If the graph G admits such a labeling, then G is said to be a distance antimagic graph. Many classes of graphs are known to be distance antimagic. For details one may refer to Gallian [3] and Kamatchi and Arumugam [4].

Let $G=(V, E)$ be a graph of order n. Let $f: V \rightarrow\{1,2, \ldots, n\}$ be a bijection. For $v \in V$, the weight of v is defined to be $w_{f}(v)=\sum_{x \in N(v)} f(x)$. If $w_{f}(v)=k$ (a constant) for every $v \in V$, then f is said to be a distance magic labeling of the graph G. A graph which admits a distance magic labeling is called a distance magic graph. The constant k is called the distance magic constant. For more details one may refer to Arumugam et al. [5]

[^0]Definition 1.1. Let G and H be two graphs. The corona $G \circ H$ is obtained by taking one copy of G and $|V(G)|$ copies of H and joining each vertex of the i th copy of H to the i th vertex of G.

In [4] Kamatchi and Arumugam proved that the graphs $P_{n}(n \neq 3)$ and $C_{n}(n \neq 4)$ are distance antimagic. They also proved that for any graph G the corona $H=G \circ K_{1}$ is a distance antimagic graph. They posed the following problem:

Problem 1.2. If G is a distance antimagic graph, are $G+K_{1}$ and $G+K_{2}$ distance antimagic?
In this paper we solve the above problem in the affirmative. We also prove certain sufficient conditions for the existence of distance antimagic labeling for the join and corona of two graphs.

Let $f: V(G) \longrightarrow\{1,2, \ldots, n\}$ be a bijection. Then for any positive integer k, we define a bijection $f_{k}: V(G) \longrightarrow$ $\{k+1, k+2, \ldots, k+n\}$ by $f_{k}(x)=f(x)+k$. It should be noted that if f is a distance antimagic labeling then f_{k} need not induce distinct vertex weights.

For example, for the path $P_{6}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$, the labeling $f: V \longrightarrow\{1,2, \ldots, 6\}$ defined by $f\left(v_{i}\right)=i$ is a distance antimagic labeling. However $w_{f_{1}}\left(v_{6}\right)=w_{f_{1}}\left(v_{2}\right)=6$.

These observations lead to the following concept of arbitrarily distance antimagic labeling, which serves as a nice tool in proving that under certain conditions the join of two graphs is distance antimagic.

Definition 1.3. A graph G of order n is said to be arbitrarily distance antimagic if there exists a bijection $f: V \longrightarrow\{1,2, \ldots, n\}$ such that $w_{f_{k}}(u) \neq w_{f_{k}}(v)$ for any two distinct vertices u and v and for any $k \geq 0$. The labeling f with this property is called an arbitrarily distance antimagic labeling of G.

In this paper we use the concept of arbitrarily distance antimagic labeling to prove the existence of distance antimagic labeling of $G+H$ and $G \circ H$ for some graphs G and H.

2. Arbitrarily distance antimagic labeling of graphs

In this section, we discuss the existence of arbitrarily distance antimagic labelings of some graphs.
Proposition 2.1. Any r-regular distance antimagic graph G is arbitrarily distance antimagic.
Proof. Let f be a distance antimagic labeling of G. Since $w_{f_{k}}(u)=w_{f}(u)+r k$ and $w_{f}(u) \neq w_{f}(v)$ for any two distinct vertices, it follows that $w_{f_{k}}(u) \neq w_{f_{k}}(v)$. Hence f is arbitrarily distance antimagic.

Proposition 2.2. Let f be a distance antimagic labeling of a graph G of order n, such that $\operatorname{deg}(u)<\operatorname{deg}(v) \Longrightarrow$ $w_{f}(u)<w_{f}(v)$. Then f is an arbitrarily distance antimagic labeling.

Proof. Let u and v be two distinct vertices. Then $w_{f}(v) \neq w_{f}(u)$. Also $w_{f_{k}}(u)=w_{f}(u)+k(\operatorname{deg}(u))$. Hence it follows that if $\operatorname{deg}(u)=\operatorname{deg}(v)$ then $w_{f_{k}}(u) \neq w_{f_{k}}(v)$. Now if $\operatorname{deg}(u)<\operatorname{deg}(v)$ then $w_{f}(u)<w_{f}(v)$. Hence $w_{f_{k}}(u)<w_{f_{k}}(v)$. Hence f is an arbitrarily distance antimagic labeling.

Theorem 2.3. The path P_{n} is arbitrarily distance antimagic for every $n \neq 3$.
Proof. Let $P_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. We consider two cases:
Case $1: n$ is odd.
Define

$$
f\left(v_{i}\right)= \begin{cases}n & \text { if } i=1 \\ n-1 & \text { if } i=n \\ 1 & \text { if } i=2 \\ 2 & \text { if } i=n-1 \\ (n+1)-i & \text { if } i=3,4, \ldots, n-2\end{cases}
$$

Then

$$
w_{f}\left(v_{i}\right)= \begin{cases}1 & \text { if } i=1 \\ 2 & \text { if } i=n \\ n-2 & \text { if } i=3 \\ n+2 & \text { if } i=n-1 \\ 2 n-2 & \text { if } i=2 \\ 2 n+2-2 i & \text { if } i=4,5, \ldots, n-2\end{cases}
$$

Case 2 : n is even.
Define

$$
f\left(v_{i}\right)= \begin{cases}n-(i-1) & \text { if } i \text { is odd } \\ i-1 & \text { if } i \text { is even }\end{cases}
$$

Then

$$
w_{f}\left(v_{i}\right)= \begin{cases}2 n+2-2 i & \text { if } i \text { is even } \\ 2 i-2 & \text { if } i \text { is odd, } 3 \leq i \leq n-1 \\ 1 & \text { if } i=1\end{cases}
$$

In both cases the vertex weights are distinct. Hence P_{n} is distance antimagic. Further if $u, v \in V\left(P_{n}\right)$ and $\operatorname{deg}(u)<\operatorname{deg}(v)$, then $w_{f}(u)<w_{f}(v)$. Hence it follows from Proposition 2.2 that f is an arbitrarily distance antimagic labeling of P_{n}.

Theorem 2.4. The cycle C_{n} is arbitrarily distance antimagic for every $n \geq 3, n \neq 4$.
Proof. Let $C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$. We consider two cases:

Case $1: n$ is odd.

Define $f: V\left(C_{n}\right) \longrightarrow\{1,2, \ldots, n\}$ by $f\left(v_{i}\right)=i$ for $1 \leq i \leq n$. Clearly f is a bijection and

$$
w_{f}\left(v_{i}\right)= \begin{cases}n+2 & \text { if } i=1 \\ 2 i & \text { if } 2 \leq i \leq n-1 \\ n & \text { if } i=n\end{cases}
$$

Case $2: n$ is even.
Define $f: V\left(C_{n}\right) \longrightarrow\{1,2, \ldots, n\}$ by $f\left(v_{i}\right)=i$ for $2 \leq i \leq n-1, f\left(v_{1}\right)=n$ and $f\left(v_{n}\right)=1$. Then

$$
w_{f}\left(v_{i}\right)= \begin{cases}3 & \text { if } i=1 \\ n+3 & \text { if } i=2 \\ 2 i & \text { if } 3 \leq i \leq n-2 \\ n-1 & \text { if } i=n-1 \\ 2 n-1 & \text { if } i=n\end{cases}
$$

In both the cases the vertex weights are distinct and hence C_{n} is distance antimagic. Now since C_{n} is regular it follows from Proposition 2.1 that the labeling f is an arbitrarily distance antimagic labeling.

Handa et al. [6] have also proved the following theorem.
Theorem 2.5. For $r \geq 2$ and $n \neq 3$, the graph $r P_{n}$ admits an arbitrarily distance antimagic labeling with the highest induced vertex weight equal to $2 r n-1$.

3. Distance antimagic labeling of join of two graphs

In this section we shall use the concept of arbitrarily distance antimagic labeling to prove that join of some classes of graphs is distance antimagic.

Theorem 3.1. Let G_{1} and G_{2} be two graphs of order n_{1} and n_{2} with arbitrarily distance antimagic labelings f_{1} and f_{2} respectively and let $n_{1} \leq n_{2}$. Let $x \in V\left(G_{1}\right)$ be the vertex with lowest weight under f_{1} and $y \in V\left(G_{2}\right)$ be the
vertex with highest weight under f_{2}. If

$$
\begin{equation*}
w_{f_{1}}(x)+\sum_{i=1}^{n_{2}}\left(n_{1}+i\right)>w_{f_{2}}(y)+\Delta\left(G_{2}\right) n_{1}+\sum_{i=1}^{n_{1}} i \tag{1}
\end{equation*}
$$

then $G_{1}+G_{2}$ is distance antimagic.
Proof. We define $f: V\left(G_{1}\right) \cup V\left(G_{2}\right) \longrightarrow\left\{1,2, \ldots, n_{1}+n_{2}\right\}$ by

$$
f(v)= \begin{cases}f_{1}(v) & \text { if } v \in V\left(G_{1}\right) \\ f_{2}(v)+n_{1} & \text { if } v \in V\left(G_{2}\right) .\end{cases}
$$

Clearly f is a bijection. Since f_{1} and f_{2} are arbitrarily distance antimagic labeling, if $u, v \in V\left(G_{1}\right)$ or $u, v \in V\left(G_{2}\right)$, then $w_{f}(u) \neq w_{f}(v)$. Now the lowest weight in G_{1} under f is $w_{f_{1}}(x)+\sum_{i=1}^{n_{2}}\left(n_{1}+i\right)$ and the highest weight in G_{2} under f is less than or equal to $w_{f_{2}}(y)+\Delta\left(G_{2}\right) n_{1}+\sum_{i=1}^{n_{1}} i$. Hence by hypothesis the lowest weight in G_{1} is greater than the highest weight in G_{2} and hence it follows that $w_{f}(u) \neq w_{f}(v)$ if $u \in V\left(G_{1}\right)$ and $u \in V\left(G_{2}\right)$. Thus f is a distance antimagic labeling of $G_{1}+G_{2}$.

Remark 3.2. Since $n_{1} \leq n_{2}$, inequality (1) implies the inequality

$$
\begin{equation*}
w_{f_{1}}(x)+n_{1} n_{2}>w_{f_{2}}(y)+n_{1} \Delta\left(G_{2}\right) \tag{2}
\end{equation*}
$$

Further inequality (2) implies inequality (1).
Theorem 3.3. Let G_{1} and G_{2} be graphs of order at least 4 which are arbitrarily distance antimagic and let $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \leq 2$. Then $G_{1}+G_{2}$ is distance antimagic.

Proof. Let $\left|V\left(G_{1}\right)\right|=n_{1},\left|V\left(G_{2}\right)\right|=n_{2}$ and $n_{1} \leq n_{2}$. Let f_{1} and f_{2} be arbitrarily distance antimagic labelings of G_{1} and G_{2} respectively. Now the highest vertex label in G_{2} under f_{2} is at most $2 n_{2}-1$ and the lowest vertex label in G_{1} under f_{1} is at least 1 . Hence inequality (2) reduces to $1+n_{1} n_{2}>2 n_{2}-1+2 n_{1}$. This inequality can be rewritten as $\frac{1}{2}>\frac{1}{n_{1}}+\frac{1}{n_{2}}-\frac{1}{n_{1} n_{2}}$ which is obviously true since $n_{1}, n_{2} \geq 4$. Hence the result follows from Theorem 3.1.

Corollary 3.4. For $n, m \geq 4$ the graph $P_{n}+P_{m}$ is distance antimagic.
Proof. Follows from Theorems 3.3 and 2.3.
Corollary 3.5. For $n, m \geq 5$, the graph $C_{n}+C_{m}$ is distance antimagic.
Proof. Follows from Theorems 2.4 and 3.3.
Theorem 3.6. Let G be a distance antimagic graph of order $n \geq 3$ with distance antimagic labeling f such that the highest weight under f is less than or equal to $\frac{n(n+1)}{2}-3$. Then $G+K_{3}$ is distance antimagic.

Proof. Since K_{3} is arbitrarily distance antimagic, by Theorem 3.1, it is enough to prove that inequality (1) holds. Since G is distance antimagic and $|V(G)| \geq 3$, the highest vertex weight in G is less than $\frac{n(n+1)}{2}-3$ and the lowest vertex weight in C_{3} is at least 3 , inequality (1) holds.

Remark 3.7. By using the same proof technique of Theorem 3.6 it can be easily proved that if G is a distance magic graph of order n with labeling f such that the highest vertex weight under f is less than or equal to $\frac{n(n+1)}{2}-3$, then $G+K_{1}$ and $G+K_{2}$ are distance antimagic. Hence from Theorem 2.3 and Theorem 2.4 we have the following corollary.

Corollary 3.8. Let $W_{n}=C_{n-1}+K_{1}$ be the wheel on n vertices. The graph $P_{n}+P_{2}$ where $n \neq 3, C_{n}+P_{2}$, where $n \neq 4$ and $W_{m}+W_{n}$, where $n, m \neq 4$ are distance antimagic.

4. Corona of graphs

In this section we investigate the existence of distance antimagic labeling for corona of two graphs.
Theorem 4.1. Let G_{1} and G_{2} be two graphs of order n_{1} and n_{2} respectively. If there exist vertices u_{i}, u_{j} in G_{2} such that $N\left(u_{i}\right)=N\left(u_{j}\right)$ then the graph $G_{1} \circ G_{2}$ is not distance antimagic.

Proof. Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$. Let $H_{1}, H_{2}, \ldots, H_{n_{1}}$ be n_{1} copies of G_{2} such that v_{i} is adjacent to each vertex of H_{i} for $1 \leq i \leq n_{1}$. Let $u_{i k}$ and $u_{j k}$ be the vertices in H_{k} corresponding to the vertices u_{i} and u_{j} respectively. Then the vertices $u_{i k}$ and $u_{j k}$ have the same neighborhood in $G_{1} \circ G_{2}$. Hence $G_{1} \circ G_{2}$ is not distance antimagic.

Theorem 4.2. Suppose G_{1} is a distance magic graph of order n_{1} with magic constant k. Let G_{2} be a r-regular graph of order n_{2} with an arbitrarily distance antimagic labeling f. Let K be the maximum weight of a vertex in G_{2} under f. Suppose

$$
\begin{equation*}
k+\frac{n_{2}}{2}\left(n_{2}+2 n_{1}+1\right)>n_{1} r\left(1+\frac{\left(n_{1}-1\right) n_{2}}{n_{1}}\right)+\left(K+n_{1}\right) . \tag{3}
\end{equation*}
$$

Then $G_{1} \circ G_{2}$ is distance antimagic.
Proof. Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$. Let $H_{1}, H_{2}, \ldots, H_{n_{1}}$ be n_{1} copies of G_{2} such that v_{i} is adjacent to each vertex of H_{i} for $1 \leq i \leq n_{1}$. Let $V\left(H_{i}\right)=\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{2}}^{i}\right\}$. Let $g: V\left(G_{1}\right) \rightarrow\left\{1,2, \ldots, n_{1}\right\}$ be a distance magic labeling of G_{1}. Now define a bijection $h: V\left(G \circ G_{2}\right) \rightarrow\left\{1,2, \ldots, n_{1}+n_{1} n_{2}\right\}$ as follows:

$$
\begin{aligned}
h\left(v_{i}\right) & =g\left(v_{i}\right) \text { if } 1 \leq i \leq n_{1} \text { and } \\
h\left(u_{j}^{i}\right) & =f\left(u_{j}\right)+n_{1}+n_{2}\left(g\left(v_{i}\right)-1\right), \text { if } 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2} .
\end{aligned}
$$

Then

$$
w_{h}\left(v_{i}\right)=k+n_{2}^{2}\left(\frac{n_{1}}{n_{2}}+\left(g\left(v_{i}\right)-1\right)+\frac{n_{2}+1}{2 n_{2}}\right), \quad \text { if } \quad 1 \leq i \leq n_{2}
$$

and

$$
w_{h}\left(u_{j}^{i}\right)=w_{f}\left(u_{j}\right)+r\left[n_{1}+\left(g\left(v_{i}\right)-1\right) n_{2}\right]+g\left(v_{i}\right) \text { if } \quad 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2} .
$$

Since f is arbitrarily distance antimagic it follows that for $1 \leq i \leq n_{1}$ and $1 \leq j_{1}, j_{2} \leq n_{2}, w_{h}\left(u_{j_{1}}^{i}\right) \neq w_{h}\left(u_{j_{2}}^{i}\right)$. Furthermore for $i_{1} \neq i_{2}, w_{h}\left(v_{i_{1}}\right) \neq w_{h}\left(v_{i_{2}}\right)$.

It remains to show that $w_{h}\left(v_{i}\right) \neq w_{h}\left(u_{j}^{q}\right)$ for $1 \leq i, q \leq n_{1}, 1 \leq j \leq n_{2}$.

$$
\begin{aligned}
\min _{1 \leq i \leq n_{1}} w_{h}\left(v_{i}\right) & =\min _{1 \leq i \leq n_{1}}\left(k+n_{2}^{2}\left(\frac{n_{1}}{n_{2}}+\left(g\left(v_{i}\right)-1\right)+\frac{n_{2}+1}{2 n_{2}}\right)\right) \\
& =k+n_{2}^{2}\left(\frac{n_{1}}{n_{2}}+\frac{n_{2}+1}{2 n_{2}}\right)
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
\max _{\substack{1 \leq i \leq n_{1} \\
1 \leq j \leq n_{2}}} w_{h}\left(u_{j}^{i}\right) & =\max _{\substack{1 \leq i \leq n_{1} \\
1 \leq j \leq n_{2}}}\left\{w_{f}\left(u_{j}\right)+r\left[n_{1}+\left(g\left(v_{i}\right)-1\right) n_{2}\right]+g\left(v_{i}\right)\right\} \\
& \leq K+r\left[n_{1}+\left(n_{1}-1\right) n_{2}\right]+n_{1} \\
& =n_{1} r\left(1+\frac{\left(n_{1}-1\right) n_{2}}{n_{1}}\right)+\left(K+n_{1}\right) .
\end{aligned}
$$

Since $k+\frac{n_{2}}{2}\left(n_{2}+2 n_{1}+1\right)>n_{1} r\left(1+\frac{\left(n_{1}-1\right) n_{2}}{n_{1}}\right)+\left(K+n_{1}\right)$, it follows that

$$
\min _{1 \leq i \leq n_{1}} w_{h}\left(v_{i}\right)>\max _{\substack{1 \leq i \leq n_{1} \\ 1 \leq j \leq n_{2}}} w_{h}\left(u_{j}^{i}\right) .
$$

Hence

$$
w_{h}\left(v_{i}\right) \neq w_{h}\left(u_{j}^{q}\right) \quad 1 \leq i, q \leq n_{1}, 1 \leq j \leq n_{2} .
$$

Theorem 4.3. The graph $C_{4} \circ C_{n}$ is distance antimagic for $n \geq 9$.
Proof. It follows from Theorem 2.4 that $C_{n}, n \neq 4$ admits a distance antimagic labeling and the highest weight induced by this labeling is $2 n-1$. Since C_{4} is distance magic with magic constant 5 , the result follows from Theorem 4.2.

5. Conclusion

In this paper the concept of arbitrarily distance antimagic labeling has been used as a tool for proving the existence of distance antimagic labelings for join and corona of two graphs. This tool can be efficiently used for proving that several classes of graphs admit distance antimagic labelings.

Acknowledgment

The second and third authors are thankful to the Department of Science and Technology, New Delhi for financial support through the project No. SR/S4/MS-734/11.

References

[1] D.B. West, Introduction to Graph Theory, Prentice Hall 1996, (2001).
[2] S. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs (Internat. Sympo-sium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris, 1967, pp. 349-355.
[3] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (DS\#6) (2014) 1-384.
[4] N. Kamatchi, S. Arumugam, Distance antimagic graphs, JCMCC 84 (2013) 61-67.
[5] S. Arumugam, D. Froneck, N. Kamatchi, Distance magic graphs-a survey, J. Indones. Math. Soc. Special Edition (2011) 11-26.
[6] A.K. Handa, A. Godinho, T. Singh, Some distance antimagic labeled graphs, in: S. Govindarajan, Anil Maheshwari (Eds.), Proc. Conference of Algorithms and Discrete Applied Mathemeatics, CALDAM 2016, 1906 (2016) 190-200.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: p2013100@goa.bits-pilani.ac.in (A.K. Handa), p2014001@goa.bits-pilani.ac.in (A. Godinho), tksingh @goa.bits-pilani.ac.in (T. Singh), s.arumugam.klu@gmail.com (S. Arumugam).
 http://dx.doi.org/10.1016/j.akcej.2017.04.003
 0972-8600/© 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

