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ABSTRACT 

Simulation of fluid flow in porous media using lattice Boltzmann method depends 

on how effectively collision, streaming and boundary conditions are implemented at 

micro level in view of the macroscopic behaviour of fluid. While collision and 

streaming have been extensively researched and attained effective formulation, 

boundary conditions still remains to be studied thoroughly. This paper studies various 

boundary conditions that are defined to simulate non-Newtonian fluid flow in porous 

media using lattice Boltzmann method. Further, these conditions are applied to 

simulate the problem of non-Newtonian forced convection in porous media and the 

variation in flow regimes and rate of heat transfer is studied based on the variation in 

velocity and thermal boundary behavior. Though velocity boundary conditions did not 

produce any difference in the flow regimes, thermal boundary conditions produced 

significant variation in rate of heat transfer. 
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1. INTRODUCTION 

Implementation of boundary conditions is one of the most important steps in simulating fluid 

flow, which brings stability and accuracy to the numerical method being used. Because of the 

kinetic approach of Lattice Boltzmann method (LBM) and macroscopic behavior of fluid flow 

not being very sensitive to microscopic particle dynamics, implementing boundary conditions 

becomes easier as compared to macroscopic methods. It is this aspect of LBM which makes it 

a preferred numerical tool over others to simulate fluid flow through complex geometries, 

especially when there is a particle-wall interaction like in the case of porous media, colloids 

and confined flows. At the same time, kinetic approach deals with fluid behavior at a much 

smaller scale compared to macroscopic scale, therefore, fluid wall interaction has to be 

incorporated carefully. Generally, the velocity space in a kinetic approach to boundary 

conditions is split two parts: incoming velocities and outgoing velocities (Gross et al. (1957), 
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Gross and Jackson (1959)), which are distinguished based on discontinuity in the distribution 

function. Different approaches to consider boundary conditions have been proposed (Walsh et 

al. (2009), Wang and Zhang (2012), Tang et al. (2005), D’Orazio and Succi (2004), Chen et 

al. (1996)). Boundary conditions form part of the iterative procedure at every iterative step, 

and therefore, these conditions should be defined in view of the theoretical boundary 

conditions so that the macroscopic boundary conditions are satisfied. During the streaming 

process, the velocities of the particles which start moving towards the wall are cut by the 

boundary. Therefore, the role of boundary conditions is to systematically define these 

distribution functions on the surface by an appropriate approximation to best fit the geometry 

and problem under investigation.  

Boundary conditions in LBM were originally adopted from lattice-Gas-Automata (LGA), 

usually referred to as Bounce-back scheme, which was used to achieve no-slip velocity 

conditions at the wall, making it ideal to problems involving solid or moving boundaries 

conditions, flow over obstacles, flow in complex geometries etc. The rules in bounce-back 

scheme are framed such a way that the distribution functions transmitted by a particle to a 

neighbouring node on the boundary while streaming are just returned back. It was established 

that this scheme has accuracy of only first order, whereas LBM has an accuracy of second 

order (Wang and Zhang (2012), Chen et al. (1996), He et al. (1997)). He et al. (1997) 

presented formula for slip-velocity in bounce-back rule. However, Suh et al. (2008) later 

revealed that the slip formula for the bounce-back algorithm presented in The et al. (1997) is 

erroneous and proposed a modified algorithm for better accuracy and stability of the LBM. 

They also showed that the numerical error of LBM occurs mainly due to slip-velocity at the 

solid boundaries. Many attempts have been made to improve accuracy of the bounce-back 

scheme. Inamuro et al. (1995) proposed boundary schemes which expressed the unknown 

proportion of particles on the boundary in terms of distribution function for wall and the 

counter slip velocity in the tangential direction. Maier et al. (1996) proposed to obtain the 

proportion of particles at the solid nodes using law of conservation of mass and momentum. 

Zou and He (1997) investigated pressure and velocity boundary conditions for 2-D and 3-D 

LBM-BGK models and proposed to define pressure and velocity on flow boundaries based on 

bounce-back of the non-equilibrium distribution function, which efficiently increased 

accuracy of the bounce-back scheme. Chen et al. (1996) proposed an extrapolation scheme to 

specify flow boundary conditions, in which they considered a layer inside the solid and 

distribution function was extrapolated from the boundary nodes and the first fluid node. Guo 

et al. (2002) proposed a first-order non-equilibrium extrapolation scheme in which the 

distribution function at the boundary node is specified in terms of the distribution function at 

the nodes in the solid wall according to the standard streaming-collision rule of the LBM. 

The Lattice Boltzmann Equation for flow in Porous Media 

The LBM-BGK equation for incompressible flow in porous media is given by 
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where is the relaxation parameter. ( )tf i ,x represents the proportion of particles at time t

positioned at x moving with a velocity ie . The second term on the right hand side represents 

the effect of porous material to fluid flow which is included by adding total body force due to 

porous media (Ergun (1952), Peng (2003), He and Luo (1997), Seta et al. (2006)), along with 

the inertial force that includes the viscous force and external force giving 
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A suitable choice for F in discrete form is discussed in [Guo and Zhao (2002), Mehrizi et 

al. (2013), Peng et al. (2004)) given by 
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2. BOUNDARY CONDITIONS FOR LBM 

2.1. Boundary Conditions for Velocity Distribution Function 

Bounce-back scheme is a node based approach to map solid walls to the lattice structure, 

wherein lattice nodes are divided into a solid, fluid and boundary nodes. The boundary nodes 

are governed by a bounce-back rule for collision, in which a particle hitting the boundary is 

bounced back in the opposite direction and its velocity is reversed. Consequently, the 

boundary shifts inside the fluid by half of the lattice length (Cornubert et al. [21]), leading to 

scheme being also called as half way partial bounce-back scheme.  

If density at the boundary is known, the unknown distribution function at the boundary 

can be expressed as a linear combination of known distribution functions. The bounce back 

rule of the non-equilibrium distribution functions is written as (Zou and He (1997)) 

neqneq ff  =
         

(4)
 

where and  are in opposite direction. The unknown distribution functions can be 

defined in a similar way by splitting the distribution function as a sum of equilibrium and 

non-equilibrium parts (Mohamad (2011), Zou and He (1997)). 

The treatment is independent of the direction and results in a first order error in velocity. 

The scheme is very simple to implement in LBM and satisfies law of conservation of mass 

and momentum. However, there are issues with this scheme in satisfying no-slip conditions. 

Consequently, the bounce-back scheme is also expressed as (Suh et al. (2008)) 
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An alternative to this scheme is where a particle hitting the boundary is reflected back in 

such a way that only the normal velocity component changes sign, whereas the tangential 

velocity component is not changed. This scheme is referred to as specular reflection scheme 

(Cornubert et al. (1991)), which produces a full slip boundary unlike the half way bounce-

back scheme. 

Another approach to predict distribution function at the boundary is by extrapolation and 

interpolation. This scheme involves extrapolating the distribution functions on the boundary 

in terms of the distribution functions on the first and second fluid nodes. For example, the 

unknown distribution functions on the west wall are given by 

( ) ( ) ( )3221 =−=== xfxfxf iii        
(6) 

The unknown distribution functions on the other boundaries are defined in a similar way. 

Extrapolation schemes have been found to increase accuracy when the boundaries are curved 

or inclined. These schemes are found to increase the accuracy of the algorithm. One reason 

being that is these schemes carry out the collision step at the nodes on the solid wall. For 

example, the distribution function at the solid node, given by (Guo et al. (2002)), expresses it 
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as the sum of the equilibrium component and the non-equilibrium component with the 

equilibrium component of the distribution function defined using Eq. 3.6.  

( ) ( ) ( )myfmyfmyf neq
i

eq
ii =+===       

(7) 

The velocity component derived with the extrapolation scheme is given by (Suh et al. 

(2008)) 

2211 uuus  +=          (8) 

Where 1 and 2  are constants that depend on the distance of the boundary wall to the 

nearest grid line towards the fluid side )(w , given by 
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The non-equilibrium part is given by 
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where the parameter  is given by 
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Higher values of w enhances accuracy of the algorithm but results in less stability which 

can be decreased by decreasing the value of 1 . Besides extrapolation, interpolation can also 

be used to approximate distribution function on the boundary. However, this scheme needs a 

minimum number of nodes and is non-local in nature. A wide number of interpolation 

schemes are proposed in literature, the simplest among which can be found in (Yu et al. 

(2003)). These schemes are similar to bounce-back scheme, the only difference being that the 

value of distribution function depends on the node position on the wall. Yu et al. (2003) 

proposed the unknown distribution functions as 
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Both the schemes have second-order accuracy and the slip velocity increases with the 

relaxation parameter. In case of interpolation schemes, the relaxation parameter increases 

quadratically whereas for extrapolation the relaxation parameter increases linearly (Suh et al. 

(2008)). Extrapolation scheme, therefore, has an advantage over other schemes as the 

magnitude of error will be comparatively less for higher values of relaxation parameter. 

In case of repeating flow situations where the flow properties in upper portion of the 

geometry are identical to the lower portion, simulation can be simplified by ignoring the 

repeated flows to reduce computational time. Periodic boundary conditions can be used to 

model flows when a part of flow in upper portion of the geometry is identical to the part of 

flow in lower portion so that the boundary values on one side of the region are implemented 

by transferring the densities with velocity components from other side. These conditions are 

usually useful in problems involving bulk flow; flow in symmetric geometries and in case the 

surface effects are of very less interest. In case there is a perfect symmetry between flows 
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along a line, it is convenient to model the flow on only one side of the line, since the flow 

properties on one side is a reflection of the other side. 

2.2. Boundary Conditions for Thermal Distribution Function 

In general, boundary conditions for energy distribution function can be identical to that of 

velocity distribution function, the simplest approach being the bounce-back scheme and the 

second order extrapolation rule. The idea is to express heat flux in terms of kinetic moments 

of particle distribution function. Consequently, a number of ideas for implementing thermal 

boundary conditions have been proposed, some of which are briefed in subsequent sections. 

This approach is identical to the bounce-back rule of non-equilibrium parts for velocity 

distribution function. The unknown distribution function at the boundary can be expressed as 

a linear combination of known distribution functions. The bounce-back rule of the non-

equilibrium distribution functions (Scheme I) is written as 

( )neqneqneqneq fegfeg 
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Where  and  are in opposite direction, ),( txg i is the energy distribution function and e

is the internal energy given by =


ig
e . 

Other approach presented by D’Orazio and Succi (2004) (Scheme II) suggested thermal 

energy density and heat flux as kinetic moments of separate energy distribution function 

),( txg i by doubling the degrees of freedom rather than supplying heat flux in terms of kinetic 

moments of velocity distribution function. For instance, the distribution functions on right 

wall were defined as  
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Use of these boundary conditions is widely seen in simulating forced convection in porous 

media. However, difficulties in implementing these conditions were observed in case of 

natural convection. 

Thermal boundary conditions are also defined based on node weights in which the 

unknown distribution functions at the wall are specified at the boundaries as per Succi (2007) 

(Scheme III) 

( )  gwwTg w −+=
        

(16) 

These types of boundary conditions were observed to be very effective in simulating 

natural convection porous media. Though, a number of other ideas to implement thermal 

boundary conditions can be found in literature, it will depend on the application to identify the 

best suitable boundary conditions based on required fluid-structure interaction and geometry 

of the boundary. Description of some of these boundary conditions can be found in Succi 

(2007), Ho et al. (2009) and Chun and Ladd (2007). 
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3. INFLUENCE OF BOUNDARY CONDITIONS ON FLOW REGIMES 

IN POROUS MEDIA 

Boundary conditions discussed in Section 3 were applied to simulate fluid flow in porous 

media and the influence of boundary treatment was studied on flow regimes.  This was done 

by simulating forced convection in porous media by a combination of two boundary 

treatments for velocity distribution function and three boundary treatments for energy 

distribution function (Scheme I-III). Consequently, influence of these boundary conditions 

was studied on velocity profiles and the rate of heat transfer.   

 

(a)       (b) 

Figure 1 Comparison of velocity profiles at center of the cavity for Da=104 , 0.99ε =  (a) as published 

in Guo and Zhao [18] (b) as computed in present investigation. 

3.1. Problem Description 

A square geometry containing porous medium was considered with top lid moving from left 

to right with a uniform velocity 1.0=U . The velocities at all other wall are assumed to be 

zero. A uniform fluid density 0.1= is imposed initially. Porosity  is set to 0.1 and the 

relaxation parameter  is assumed to be 0.8. Half-way bounce back boundary conditions are 

used in the numerical simulation. Numerical simulation is carried out for values of Da 

between 10-5 and 10-2 at 10Re = and 100Re = . A MATLAB code was developed for a 

100100 mesh grid to solve the governing equations stated in Eq. 3.5-3.11 and Eq. 3.33. The 
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numerical technique was verified by comparing the results for Da=104 and 99.0= at 

400Re =  and 1000Re = with Guo and Zhao [20]. The results are shown in Fig 1 and shows 

fine agreement with established results. 

4. RESULTS AND DISCUSSIONS 

This problem was to study the impact of boundary behavior on the velocity profiles and rate 

of heat transfer by considering forced convection influenced by a temperature difference 

between west and east wall of the cavity. Carreau-Yasuda model is used to represent non-

Newtonian fluids given by Sochi (2010) 
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where 0 and  are viscosities at zero and infinite shear rate, respectively. The 

parameters a and b along with 0 and  should be appropriately defined for numerical 

simulation to converge which depend on index n and material properties of the porous media. 

Simulation is carried out by using different types of boundary conditions each for velocity 

distribution function and energy distribution function. The boundary behaviour for velocity 

distribution function was considered based on half-way partial bounce back scheme and the 

bounce back scheme based on non-equilibrium distribution function, while behaviour for 

energy distribution function was considered based on scheme I, scheme II and scheme III. 

The momentum equation and energy equation are not coupled for forced convection; 

therefore, the energy equation can be solved after the momentum equations are solved to 

obtain velocity components. Both the schemes considered for velocity distribution function 

produced the same results as seen in Figure 1. However, significant difference in rate of heat 

transfer was observed based on the scheme employed for energy distribution function. This 

was observed based on the variation in Nu depending on the thermal boundary conditions 

employed in the algorithm. Results were obtained for shear-thinning fluid by considering 

5.0=n  at  210−=Da  and 1.0Re = for various values of porosity, which are presented in Table 

1.  
Table 1 Comparison of Nu values for two boundary schemes 

 ε  

0.1 0.4 0.7 

Scheme I 3.9717 4.4537 5.1441 

Scheme II 18.0768 19.0784 21.0792 

Scheme III 1.9802 1.9889 1.9902 

The difference in Nu is because of the fact that scheme II is able to include the viscous 

heating effects much better as compared to other schemes. This may be due to the ability of 

scheme express the heat flux in terms of only the first moment of energy distribution function. 

However, this scheme has stability issues when used in case of natural convection. Therefore, 

scheme I and III are a preferred choice for problems involving natural convection in porous 

media. In case of forced convection, scheme II produces a stronger heat transfer due to a 

better particle boundary interaction. The relative increase in the rate of heat transfer 

depending on porosity was observed in case of scheme I with the other two schemes 

producing a similar margin of increase between them. These observations are useful while 

simulating non-Newtonian forced and natural convection (non-isothermal flows) in porous 

media. 
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