See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321447534

Distance Antimagic Labeling of the Ladder Graph

Article in Electronic Notes in Discrete Mathematics • December 2017
DOI: 10.1016/j.endm.2017.11.028

citations	READS
0	383
3 authors:	
adarsh Kumar Handa BITS Pilani, K K Birla Goa 4 publications 4 Citations	Aloysius Godinho BITS Pilani, K K Birla Goa 9 PUBLICATIONS 8 CITATIONS
SEE PRoflLe	SEE PROFILE

Tarkeshwar Singh
BITS Pilani, K K Birla Goa
36 publications 121 citations
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Both belong to two different theses. View project

Project Graph Labeling, Graceful Skolem graceful, Hypergraceful, Distance Magic and Antimagic Graphs View project

Distance Antimagic Labeling of the Ladder Graph

A. K. Handa ${ }^{1}$ Aloysius Godinho ${ }^{2}$ T. Singh ${ }^{3}$
Department of Mathematics
BITS Pilani K K Birla Goa Campus
Goa, India.

Abstract

Let G be a graph of order n. Let $f: V(G) \longrightarrow\{1,2, \ldots, n\}$ be a bijection. The weight $w_{f}(v)$ of a vertex with respect to f is defined by $w_{f}(v)=\sum_{x \in N(v)} f(x)$. The labeling f is said to be distance antimagic if $w_{f}(u) \neq w_{f}(v)$ for every pair of vertices $u, v \in V(G)$. If the graph G admits such a labeling then G is said to be a distance antimagic graph. In this paper we investigate the existence of distance antimagic labeling in the ladder graph $L_{n} \cong P_{2} \square P_{n}$.

Keywords: Distance antimagic graphs, antimagic labeling, arbitrarily distance antimagic.
2010 Mathematics Subject Classification: 05C 78.

1 Introduction

By a graph $G=(V, E)$, we mean a finite undirected graph without loops, multiple edges or isolated vertices. For graph theoretic terminology we refer

[^0]to West [7].
Most of the graph labeling methods trace their origin to the concept of β-valuation introduced by Rosa [6]. For a general overview of graph labeling we refer to the dynamic survey by Gallian [2].

Let G be a graph of order n. Let $f: V(G) \longrightarrow\{1,2, \ldots, n\}$ be a bijection. The weight $w_{f}(v)$ of a vertex v is defined by $w_{f}(v)=\sum_{x \in N(v)} f(x)$ where $N(v)$ is the open neighbourhood of the vertex v. The labeling f is said to be distance antimagic if $w_{f}(u) \neq w_{f}(v)$ for every pair of vertices $u, v \in V(G)$. If the graph G admits such a labeling, then G is said to be a distance antimagic graph. Many classes of graphs are known to be distance antimagic. For details one may refer to Gallian [2] and Arumugam et al. [1]. In [5] Kamatchi and Arumugam posed the following problem:
Problem 1.1 If G is a distance antimagic graph, is it true that $G+K_{1}$ and $G+K_{2}$ are distance antimagic?

In [3] Handa et al. solved the problem in the affirmative. They introduced the concept of arbitrarily distance antimagic labeling as a tool to study distance antimagic labeling of join of two graphs.

Definition 1.2 A graph G of order n is said to be arbitrarily distance antimagic if there exists a bijection $f: V \longrightarrow\{1,2, \ldots, n\}$ such that $w_{f_{k}}(u) \neq$ $w_{f_{k}}(v)$ for any two distinct vertices u and v and for any $k \geq 0$. The labeling f with this property is called an arbitrarily distance antimagic labeling of G.

The following results are proved in [3].
Proposition 1.3 [3] Any r-regular distance antimagic graph G is arbitrarily distance antimagic.

Theorem 1.4 [3] Let f be a distance antimagic labeling of a graph G of order n. If $w_{f}(u)<w_{f}(v)$ whenever $\operatorname{deg}(u)<\operatorname{deg}(v)$, then G is arbitrarily distance antimagic.

Proposition 1.5 [3] Let G_{1} and G_{2} be two graphs of order n_{1} and n_{2} with arbitrarily distance antimagic labelings f_{1} and f_{2} respectively, and let $n_{1} \leq n_{2}$. Let $x \in V\left(G_{1}\right)$ be the vertex with lowest weight under f_{1} and $y \in V\left(G_{2}\right)$ be the vertex with highest weight under f_{2}. If

$$
\begin{equation*}
w_{f_{1}}(x)+\sum_{i=1}^{n_{2}}\left(n_{1}+i\right)>w_{f_{2}}(y)+\Delta\left(G_{2}\right) n_{1}+\sum_{i=1}^{n_{1}} i \tag{1}
\end{equation*}
$$

then $G_{1}+G_{2}$ is distance antimagic.

Since $n_{1} \leq n_{2}$ the above inequality reduces to

$$
\begin{equation*}
w_{f_{1}}(x)+n_{1} n_{2}>w_{f_{2}}(y)+n_{1} \Delta\left(G_{2}\right) \tag{2}
\end{equation*}
$$

Theorem 1.6 [3] Let G be a distance antimagic graph of order $n \geq 3$ with distance antimagic labeling f such that the highest weight under f is less than or equal to $\frac{n(n+1)}{2}-3$. Then $G+K_{3}$ is distance antimagic.

Handa et al. [4] obtained arbitrarily distance antimagic labeling for the graphs $r P_{n}$, generalized Petersen graph $P(n, k)$ for $n \geq 5$, Harary graph $H_{4, n}$ for $n \neq 6$ and the join of these graphs.

2 Main Results

In this section we shall obtain an arbitrarily distance antimagic labeling of the ladder graph $L_{n} \cong P_{n} \square P_{2}$.

Theorem 2.1 The ladder $L_{n} n \geq 3$ is arbitrarily distance antimagic.
Proof We consider the following two cases:
Case 1: n odd
Arbitrarily distance antimagic labeling for the graphs L_{3} and L_{7} are given in figures 1 and 2 respectively. For $n \geq 5, n \neq 7$ we define a labeling f : $V\left(L_{n}\right) \rightarrow\{1,2, \ldots, 2 n\}$ as follows:

$$
\begin{gathered}
f\left(u_{i}\right)= \begin{cases}1 & \text { if } i=1 \\
6 & \text { if } i=2 \\
8 & \text { if } i=n-1 \\
3 & \text { if } i=n \\
4+2 i & \text { if } i=3,4, \ldots, n-2\end{cases} \\
f\left(v_{i}\right)= \begin{cases}2 & \text { if } i=1 \\
5 & \text { if } i=2 \\
7 & \text { if } i=n-1 \\
4 & \text { if } i=n \\
2 n+5-2 i & \text { if } i=3,4, \ldots, n-2\end{cases}
\end{gathered}
$$

The induced vertex weights are a follows:

$$
\begin{aligned}
& w\left(u_{i}\right)= \begin{cases}8 i & \text { if } i=1,2 \\
12 & \text { if } i=n \\
2 n+17 & \text { if } i=3 \\
2 n+10 & \text { if } i=n-1 \\
2 n+15 & \text { if } i=n-2 \\
2 n+13+2 i & \text { if } i=4,5, \ldots, n-3\end{cases} \\
& w\left(v_{i}\right)= \begin{cases}6 & \text { if } i=1 \\
21 & \text { if } i=n-1 \\
10 & \text { if } i=n \\
2 n+7 & \text { if } i=2 \\
2 n+12 & \text { if } i=3 \\
4 n+14-2 i & \text { if } i=4,5, \ldots, n-2\end{cases}
\end{aligned}
$$

Case 2: $n \geq 4, n$ is even.
We define a labeling $f: V\left(L_{n}\right) \rightarrow\{1,2, \ldots, 2 n\}$ as follows:

$$
\begin{gathered}
f\left(u_{i}\right)= \begin{cases}1 & \text { if } i=1 \\
6 & \text { if } i=2 \\
8 & \text { if } i=n-1 \\
3 & \text { if } i=n \\
2 n+6-2 i & \text { if } i=3,4, \ldots, n-2\end{cases} \\
f\left(v_{i}\right)= \begin{cases}2 & \text { if } i=1 \\
5 & \text { if } i=2 \\
7 & \text { if } i=n-1 \\
4 & \text { if } i=n \\
3+2 i & \text { if } i=3,4, \ldots, n-2\end{cases}
\end{gathered}
$$

The induced vertex weights are as follows:

$$
\begin{aligned}
& w\left(u_{i}\right)= \begin{cases}8 & \text { if } i=1 \\
2 n+6 & \text { if } i=2 \\
20 & \text { if } i=n-1 \\
12 & \text { if } i=n \\
2 n+13 & \text { if } i=3 \\
4 n+15-2 i & \text { if } i=4,5, \ldots, n-2\end{cases} \\
& w\left(v_{i}\right)= \begin{cases}6 & \text { if } i=1 \\
2 n+11 & \text { if } i=n-1 \\
10 & \text { if } i=n \\
17 & \text { if } i=2 \\
2 n+16 & \text { if } i=3 \\
2 n+14 & \text { if } i=n-2 \\
2 n+12+2 i & \text { if } i=4,5, \ldots, n-3\end{cases}
\end{aligned}
$$

It is clear that all the weights are distinct. Furthermore the vertices with degree 2 receive the lowest weights in the labeling. Hence by Theorem 1.4 the labeling is arbitrarily distance antimagic.

Figure 1. Arbitrarily distance antimagic labeling of L_{3}.

Figure 2. Arbitrarily distance antimagic labeling of L_{7}.

3 Conclusion

In this paper we have obtained an arbitrarily distance antimagic labeling for the graph $L_{n} \cong P_{2} \square P_{n}$. However the question of whether or not the graph $P_{n} \square P_{m}$ is arbitrarily distance antimagic still remains open. We pose the general problem as follows:

Problem 3.1 If the graphs G and H are distance antimagic, under what conditions is the graph $G \square H$ distance antimagic?

References

[1] Arumugam, S., D. Froneck and N. Kamatchi Distance Magic Graphs-A Survey, J. Indones. Math. Soc. Special Edition (2011), 11-26
[2] Gallian, J. A., A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics (DS \#6), 2014, 1-384.
[3] Handa, A. K., A. Godinho, T. Singh and S. Arumugam, Distance Antimagic labeling of Join and Corona of two Graphs, AKCE International Journal of Graphs and Combinatorics, 27 (2017), 172-177.
[4] Handa, A. K., A. Godinho and T. Singh Some Distance Antimagic Labeled Graphs, Proc. Conference of Algorithms and Discrete Applied Mathemeatics (CALDAM 2016), (Eds. S. Govindarajan and Anil Maheshwari), Lecture Notes in Computer Science, Vol. 1906(2016), 190-200.
[5] Kamatchi, N. and S. Arumugam, Distance antimagic graphs, JCMCC, 84 (2013), 61-67.
[6] Rosa, A., On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355.
[7] West, D. B. "Introduction to Graph Theory," Prentice Hall 1996, 2001.

[^0]: ${ }^{1}$ Email: p2013100@goa.bits-pilani.ac.in
 ${ }^{2}$ Email: p2014001@goa.bits-pilani.ac.in
 ${ }^{3}$ Email: tksingh@goa.bits-pilani.ac.in

