See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/308925679

Some Distance Antimagic Labeled Graphs

Conference Paper • February 2016
DOI: 10.1007/978-3-319-29221-2_16

CITATIONS
2

3 authors:
adarsh Kumar Handa
BITS Pilani, K K Birla Goa
4 PUBLICATIONS 4 CITATIONS
SEE PROFILE

Aloysius Godinho

 BITS Pilani, K K Birla Goa 9 PUBLICATIONS 8 CITATIONSSEE PROFILE

Tarkeshwar Singh
BITS Pilani, K K Birla Goa
36 PUBLICATIONS 121 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Both belong to two different theses. View project

Project \quad Some distance antimagic labelled graphs View project

Some Distance Antimagic Labeled Graphs

Adarsh K. Handa ${ }^{\star}$, Aloysius Godinho, and T. Singh
Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, India. \{p2013100, p2014001,tksingh\}@goa.bits-pilani.ac.in

Abstract

Let G be a graph of order n. A bijection $f: V(G) \longrightarrow$ $\{1,2, \ldots, n\}$ is said to be distance antimagic if for every vertex v the vertex weight defined by $w_{f}(v)=\sum_{x \in N(v)} f(x)$ is distinct. The graph which admits such a labeling is called a distance antimagic graph. For a positive integer k, define $f_{k}: V(G) \longrightarrow\{1+k, 2+k, \ldots, n+k\}$ by $f_{k}(x)=f(x)+k$. If $w_{f_{k}}(u) \neq w_{f_{k}}(v)$ for every pair of vertices $u, v \in V$, for any $k \geq 0$ then f is said to be an arbitrarily distance antimagic labeling and the graph which admits such a labeling is said to be an arbitrarily distance antimagic graph. In this paper, we provide arbitrarily distance antimagic labelings for $r P_{n}$, generalised Petersen graph $P(n, k), n \geq 5$, Harary graph $H_{4, n}$ for $n \neq 6$ and also prove that join of these graphs is distance antimagic.

Keywords: Distance antimagic graphs, antimagic labeling. 2010 Mathematics Subject Classification: 05C 78.

1 Introduction

By a graph we mean a finite undirected graph without loops and multiple edges. Throughout this paper, we consider simple graphs without isolates. For graph theoretic terminologies and notations we refer to West [7].

Graph labeling is an assignment of numbers to graph elements such as vertices or edges or both. The origin of graph labeling can be traced back to the concept of β-valuations introduced by Rosa [6]. For a general overview of the current developments in graph labeling we refer to the dynamic survey by Gallian [3].

Let $G=(V, E)$ be a graph of order n. Let $f: V \rightarrow\{1,2, \ldots, n\}$ be a bijection. For each vertex v, define the weight of v as $w_{f}(v)=\sum_{x \in N(v)} f(x)$. Then f is said to be a distance magic labeling of G if for every pair of vertices u and $v, w_{f}(u)=w_{f}(v)(c f .:[1,3,5,8])$.

[^0]A natural question arises:Is it possible to assign a bijection f to the vertices of the graph G such that $w_{f}(u) \neq w_{f}(v)$ for every pair of vertices $u, v \in V$? A labeling which satisfies this condition is known as distance antimagic labeling and a graph which admits such a labeling is called a distance antimagic graph. This topic is studied extensively by Arumugam and Kamatchi [5].

Arumugam et al.[2] have proved that the path $P_{n}, n \neq 3$, the cycle $C_{n}, n \neq$ 4, the wheel $W_{n}, n \neq 4$, and the graph $G=r K_{2}+K_{1}$ are distance antimagic. They also posed the following problem:

Problem : If G is distance antimagic, are $G+K_{1}, G+K_{2}$ distance antimagic?

Handa et al. [4] have introduced the concept of arbitrarily distance antimagic labeling of a graph as follows:

Let $f: V(G) \rightarrow\{1,2, \ldots, n\}$ be a distance antimagic labeling of a graph G. For a positive integer k, define $f_{k}: V(G) \longrightarrow\{1+k, 2+k, \ldots, n+k\}$ by $f_{k}(x)=f(x)+k$. If $w_{f_{k}}(u) \neq w_{f_{k}}(v)$ for every pair of vertices $u, v \in V$, for any $k \geq 0$ then f is called an arbitrarily distance antimagic labeling and the graph which admits such a labeling is said to be an arbitrarily distance antimagic graph. Note that an arbitrarily distance antimagic graph is always distance antimagic. But the converse is not true. Using the notion of arbitrarily distance antimagic labeling of graphs, they have answered the above problem in an affirmative way and have also proved that join of two graphs, in particular $P_{n}+P_{m}, P_{n}+C_{m}, P_{n}+W_{m}$ and $C_{n}+W_{n}$ are distance antimagic (cf.:[4]). In [4] they have posed the following problem:

Problem: If G and H are distance antimagic, is $G+H$ distance antimagic?
The following results are useful for our investigation.
Proposition 1. [4] Any r-regular distance antimagic graph G is arbitrarily distance antimagic.

Theorem 1. [4] Let f be a distance antimagic labeling of a graph G of order n. If $w_{f}(u)<w_{f}(v)$ whenever $\operatorname{deg}(u)<\operatorname{deg}(v)$ then G is arbitrarily distance antimagic.

Proposition 2. [4] Let G_{1} and G_{2} be two graphs of order n_{1} and n_{2} with arbitrarily distance antimagic labelings f_{1} and f_{2} respectively, such that $n_{1} \leq n_{2}$. Let $x \in V\left(G_{1}\right)$ be the vertex with lowest weight under f_{1} and $y \in V\left(G_{2}\right)$ be the vertex with highest weight under f_{2}. If

$$
\begin{equation*}
w_{f_{1}}(x)+\sum_{i=1}^{n_{2}}\left(n_{1}+i\right)>w_{f_{2}}(y)+\Delta\left(G_{2}\right) n_{1}+\sum_{i=1}^{n_{1}} i \tag{1}
\end{equation*}
$$

then $G_{1}+G_{2}$ is distance antimagic.

Since $n_{1} \leq n_{2}$ the above inequality reduces to

$$
\begin{equation*}
w_{f_{1}}(x)+n_{1} n_{2}>w_{f_{2}}(y)+n_{1} \Delta\left(G_{2}\right) \tag{2}
\end{equation*}
$$

Theorem 2. [4] Let G_{1} and G_{2} be graphs of order at least 4 which are arbitrarily distance antimagic and let $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \leq 2$. Then $G_{1}+G_{2}$ is distance antimagic.

Theorem 3. [4] Let G be a distance antimagic graph of order $n \geq 3$ with distance antimagic labeling f such that the highest weight under f is less than or equal to $\frac{n(n+1)}{2}-3$. Then $G+K_{3}$ is distance antimagic.

In this paper, we obtain arbitrarily distance antimagic labelings for the graphs $r P_{n}$, generalised Petersen graph $P(n, k)$ for $n \geq 5$, Harary graph $H_{4, n}$ for $n \neq 6$ and also prove that join of these graphs is distance antimagic.

2 Main Results

The graph $r P_{n}$ is the disjoint union of r copies of P_{n} with vertex set $V=$ $\left\{v_{i, j} \mid 1 \leq i \leq r, 1 \leq j \leq n\right\}$ where the sequence $v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}$ (Figure 1) denotes the vertices of $i^{t h}$ path in $r P_{n}$.

Fig. 1. Union of paths $r P_{n}$

Lemma 1. For $r \in \mathbb{N}$ and odd $n \geq 5, r P_{n}$ is arbitrarily distance antimagic.
Proof. It is sufficient to provide a distance antimagic labeling of $r P_{n}$ for odd $n \geq 5$. We define a labeling $f: V \rightarrow\{1,2, \cdots, r n\}$ in each of the following cases:

Case $1: n \equiv 1(\bmod 4)$.

$$
f\left(v_{i, j}\right)= \begin{cases}2 i-1+r(j-2) & \text { if } 1 \leq i \leq r, j=2,4, \ldots, \frac{n-1}{2} \\ 2 i+r(n-1-j) & \text { if } 1 \leq i \leq r, j=\frac{n+3}{2}, \frac{n+3}{2}+2, \ldots, n-1, \\ n r-\frac{(i-1)(n+1)}{2}-\frac{j-1}{2} & \text { if } 1 \leq i \leq r, j=1,3,5, \ldots, n\end{cases}
$$

then the vertex weights are as follows:
$w_{f}\left(v_{i, j}\right)= \begin{cases}2 n r-(i-1)(n+1)-j+1 & \text { if } 1 \leq i \leq r, \quad j=2,4, \ldots, n-1, \\ 4 i-2+r(2 j-4) & \text { if } 1 \leq i \leq r, \quad j=3,5, \ldots, \frac{n-3}{2}, \\ 4 i+2 r(n-j-1) & \text { if } 1 \leq i \leq r, \quad \frac{n+5}{2}, \frac{n+5}{2}+2, \ldots, n-2, \\ 4 i-1+r(n-5) & \text { if } 1 \leq i \leq r, \quad j=\frac{n+1}{2}, \\ 2 i-1 & \text { if } 1 \leq i \leq r, \quad j=1, \\ 2 i & \text { if } 1 \leq i \leq r, \quad j=n .\end{cases}$
Case $2: n \equiv 3(\bmod 4)$.

$$
f\left(v_{i, j}\right)= \begin{cases}2 i-1+r(j-2) & \text { if } 1 \leq i \leq r, \quad j=2,4, \ldots, \frac{n-3}{2}, \\ 2 i+r(n-1-j) & \text { if } 1 \leq i \leq r, \quad j=\frac{n+5}{2}, \frac{n+5}{2}+2, \ldots, n-1, \\ i+\frac{r(n-3)}{2} & \text { if } 1 \leq i \leq r, \quad j=\frac{n+1}{2} \\ n r-\frac{(i-1)(n+1)}{2}-\left(\frac{j-1}{2}\right) & \text { if } 1 \leq i \leq r, \quad j=1,3,5, \ldots, n\end{cases}
$$

the vertex weights are as follows:
$w_{f}\left(v_{i, j}\right)= \begin{cases}2 n r-(i-1)(n+1)-j+1 & \text { if } 1 \leq i \leq r, j=2,4, \ldots, n-1, \\ 4 i-2+r(2 j-4) & \text { if } 1 \leq i \leq r, j=3,5, \ldots, \frac{n-5}{2}, \\ 4 i+2 r(n-j-1) & \text { if } 1 \leq i \leq r, \quad \frac{n+7}{2}, \frac{n+7}{2}+2, \ldots, n-3, \\ 3 i-1+r(n-5) & \text { if } 1 \leq i \leq r, j=\frac{n-1}{2}, \\ 3 i+r(n-5) & \text { if } 1 \leq i \leq r, j=\frac{n+3}{2}, \\ 2 i-1 & \text { if } 1 \leq i \leq r, j=1, \\ 2 i & \text { if } 1 \leq i \leq r, j=n .\end{cases}$
In each of the above cases, it is easy to check that f is a bijection and the weights of the vertices are distinct. Since the lowest weights are assigned to the pendent vertices, it follows from Theorem 1 that the labeling f is an arbitrarily distance antimagic labeling of $r P_{n}$.

Lemma 2. The graph $r P_{n}$ is arbitrarily distance antimagic for all even $n \geq 4$.
Proof. It is sufficient to provide a distance antimagic labeling for $r P_{n}$ for even $n \geq 4$. We define a distance antimagic labeling $f: V \rightarrow\{1,2, \cdots, r n\}$ as follows:

$$
f\left(v_{i, j}\right)= \begin{cases}2 i+r(j-2)-1 & \text { if } 1 \leq i \leq r, \quad j=2,4, \ldots, n \\ 2 i+r(n-1-j) & \text { if } 1 \leq i \leq r, \quad j=1,3, \ldots, n-1\end{cases}
$$

then the vertex weights are as follows:

$$
w_{f}\left(v_{i, j}\right)= \begin{cases}4 i-2+r(2 j-4) & \text { if } 1 \leq i \leq r, \quad j=3,5, \ldots, n-1 \\ 4 i+2 r(n-j-1) & \text { if } 1 \leq i \leq r, \quad 2,4 \ldots, n-2 \\ 2 i-1 & \text { if } 1 \leq i \leq r, \quad j=1 \\ 2 i & \text { if } 1 \leq i \leq r, \quad j=n\end{cases}
$$

It is easy to check that f is a bijection and the weights of the vertices are distinct. Since the lowest weights are assigned to the pendent vertices it follows from Theorem 1 that the labeling f is an arbitrarily distance antimagic labeling of $r P_{n}$.

Lemma 3. $r P_{5}$ is arbitrarily distance antimagic.
Proof. It is sufficient to provide a distance antimagic labeling of $r P_{5}$. We define a labeling $f: V \rightarrow\{1,2, \cdots, r n\}$ in each of the following cases:

Case 1: r is even.

$$
f\left(v_{i, j}\right)= \begin{cases}3 r-i & \text { if } j=4,1 \leq i \leq r \\ 2 i-1 & \text { if } j=2,1 \leq i \leq r \\ 4 i-2 & \text { if } j=1,1 \leq i \leq \frac{r}{2}-1 \\ 4 i & \text { if } j=5,1 \leq i \leq \frac{r}{2}-1 \\ 4 r-1-i & \text { if } j=3,1 \leq i \leq \frac{r}{2}-1 \\ 2 r-2 & \text { if } i=r j=5\end{cases}
$$

Let S be the set of vertex labels assigned above, therefore $S=\{3 r-$ $1,3 r-2, \ldots, 2 r\} \cup\{1,3,5, \ldots, 2 r-1\} \cup\{2,6, \ldots, 2 r-6\} \cup\{4,8, \ldots, 2 r-4\} \cup$ $\left\{4 r-2,4 r-3, \ldots, \frac{7 r}{2}\right\} \cup\{2 r-2\}$. Let $A=\{1,2,3, \ldots, 5 r\} \backslash S$. Therefore $A=$ $\left\{3 r, 3 r+1, \ldots, \frac{7 r-2}{2}\right\} \cup\{4 r-1,4 r, \ldots, 5 r\}$. The number of elements in A is $\frac{3 r}{2}+2$. Now, we label the remaining vertices of $r P_{5}$ with the labels in A from left to right whilst moving downwards. It is clear that label of all vertices are distinct.

Then the weight of vertices are as follows:

$$
w_{f}\left(v_{i, j}\right)= \begin{cases}2 i-1 & \text { if } j=1,1 \leq i \leq r \\ 3 r-i & \text { if } j=5,1 \leq i \leq r \\ 3 r+i-1 & \text { if } j=3,1 \leq i \leq r \\ 4 r+3(i-1) & \text { if } j=2,1 \leq i \leq \frac{r}{2}-1 \\ 4 r+3 i-1 & \text { if } j=4,1 \leq i \leq \frac{r}{2}-1 \\ 7 r-2 & \text { if } i=r, j=4\end{cases}
$$

The weights of the remaining vertices which are labeled from the set A are in increasing order, the weights of the vertices increase as we move downward
from left to right. Hence they are distinct.
Case 2: r is odd.

$$
f\left(v_{i, j}\right)= \begin{cases}3 r-i & \text { if } j=4,1 \leq i \leq r \\ 2 i-1 & \text { if } j=2,1 \leq i \leq r \\ 4 i-2 & \text { if } j=1,1 \leq i \leq\left\lfloor\frac{r}{2}\right\rfloor \\ 4 i & \text { if } j=5,1 \leq i \leq\left\lfloor\frac{r}{2}\right\rfloor \\ 4 r-1-i & \text { if } j=3,1 \leq i \leq\left\lfloor\frac{r}{2}\right\rfloor\end{cases}
$$

Let S be the set of vertex labels assigned above, therefore $S=\{3 r-$ $1,3 r-2, \ldots, 2 r\} \cup\{1,3,5, \ldots, 2 r-1\} \cup\left\{2,6, \ldots, 4\left\lfloor\frac{r}{2}\right\rfloor-2\right\} \cup\left\{4,8, \ldots, 4\left\lfloor\frac{r}{2}\right\rfloor\right\} \cup$ $\left\{4 r-2,4 r-3, \ldots, 4 r-1-\left\lfloor\frac{r}{2}\right\rfloor\right\}$. Let $A=\{1,2,3, \ldots, 5 r\} \backslash S$. Therefore $A=$ $\left\{3 r, 3 r+1, \ldots,\left\lfloor\frac{7 r-2}{2}\right\rfloor\right\} \cup\{4 r-1,4 r, \ldots, 5 r\}$. Now, we label the remaining vertices of $r P_{5}$ with the numbers from A from left to right whilst moving downwards (refer Figure 1). It is clear that the labels of all the vertices are distinct.

The weight of vertices are as follows:

$$
w_{f}\left(v_{i, j}\right)= \begin{cases}2 i-1 & \text { if } j=1,1 \leq i \leq r \\ 3 r-i & \text { if } j=5,1 \leq i \leq r \\ 3 r+i-1 & \text { if } j=3,1 \leq i \leq r \\ 4 r+3(i-1) & \text { if } j=2,1 \leq i \leq \frac{r}{2} \\ 4 r+3 i-1 & \text { if } j=4,1 \leq i \leq \frac{r}{2}\end{cases}
$$

The weights of the remaining vertices which are labeled from the set A are in increasing order, therefore the weights of the vertices increase as we move downward from left to right. Hence they are distinct.

In each of the above cases, since the lowest weights are assigned to the pendent vertices, it follows from Theorem 1 that the labeling f is an arbitrarily distance antimagic labeling.

Observation 4. Let $V\left(r P_{3}\right)=\left\{v_{i, j}: 1 \leq i \leq r, 1 \leq j \leq 3\right\}$. If $f: V\left(r P_{3}\right) \rightarrow$ $\{1,2, \ldots, 3 r\}$ is a bijection, then for any $i, w_{f}\left(v_{i, 1}\right)=w_{f}\left(v_{i, 3}\right)$. Hence for any $r \in \mathbb{N}$, the graph $r P_{3}$ is not distance antimagic.

Observation 5. If $f: V\left(r P_{2}\right) \rightarrow\{1,2, \ldots, 2 r\}$ be any bijection, then $w_{f}\left(v_{i, 1}\right)=$ $f\left(v_{i, 2}\right)$ and $w_{f}\left(v_{i, 2}\right)=f\left(v_{i, 1}\right)$. Since the labels of all the vertices are distinct, it follows that all the vertex weights are also distinct. Therefore for any $r \in \mathbb{N}$, the graph $r P_{2}$ is arbitrarily distance antimagic.

Theorem 6. For $r \in \mathbb{N}$, the graph $r P_{n}$ is arbitrarily distance antimagic if and only if $n \neq 3$.

Proof. The proof of the theorem follows from Lemmas 1, 2, 3 and Observations 4, 5.

Theorem 7. Harary graph $H_{4, n}$ is arbitrarily distance antimagic for all $n \neq 6$.
Proof. Let the vertex set of $H_{4, n}$ be $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. It is sufficient to provide a distance antimagic labeling of $H_{4, n}$. We define a labeling $f: V \rightarrow\{1,2, \cdots, n\}$ in each of the following cases:

Case 1: n is odd.
$f\left(v_{i}\right)=i, i=1,2, \ldots, n$.
The vertex weights are as follows:

$$
w_{f}\left(v_{i}\right)= \begin{cases}2 n+4 & \text { if } i=1 \\ 2 n & \text { if } i=n \\ 4 i & \text { if } i=3,4,5, \ldots, n-2 \\ 3 n-4 & \text { if } i=n-1 \\ n+8 & \text { if } i=2\end{cases}
$$

Case 2: n is even. In this case we have the following two sub-cases:
Sub-case 1: $n \equiv 0(\bmod 4)$.

$$
f\left(v_{i}\right)= \begin{cases}i & \text { if } i=1,2, \ldots, n-2 \\ n & \text { if } i=n-1 \\ n-1 & \text { if } i=n\end{cases}
$$

The vertex weights are as follows:

$$
w_{f}\left(v_{i}\right)= \begin{cases}2 n+4 & \text { if } i=1 \\ n+7 & \text { if } i=2 \\ 4 i & \text { if } i=3,4,5, \ldots, n-4 \\ 4 n-11 & \text { if } i=n-3 \\ 4 n-8 & \text { if } i=n-2 \\ 3 n-5 & \text { if } i=n-1 \\ 2 n+1 & \text { if } i=n\end{cases}
$$

Sub-case 2: $n \equiv 2(\bmod 4)$.

$$
f\left(v_{i}\right)= \begin{cases}i & \text { if } i=1,2, \ldots, n-3 \\ n & \text { if } i=n-2 \\ n-2 & \text { if } i=n-1 \\ n-1 & \text { if } i=n\end{cases}
$$

The vertex weights are as follows:

$$
w_{f}\left(v_{i}\right)= \begin{cases}2 n+2 & \text { if } i=1 \\ n+7 & \text { if } i=2, \\ 4 i & \text { if } i=3,4,5, \ldots, n-5 \\ 4 n-14 & \text { if } i=n-4 \\ 4 n-11 & \text { if } i=n-3 \\ 4 n-10 & \text { if } i=n-2 \\ 3 n-3 & \text { if } i=n-1 \\ 2 n+1 & \text { if } i=n\end{cases}
$$

In each of the above cases, it is easy to see that the labels of the vertices and weights of the vertices are also distinct. By Proposition 1 the labeling f is an arbitrarily distance antimagic labeling.

The illustration of the distance antimagic labeling for $H_{4,8}$ is shown in figure 2.

Fig. 2. Distance antimagic labeling of $H_{4,8}$

For $n \geq 5$ and $k<\frac{n}{2}$, the generalized Petersen graph $P(n, k)$ is a graph with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{u_{i} u_{i+1}, u_{i} v_{i}, v_{i} v_{i+k}: 1 \leq\right.$ $i \leq n\}$ where the subscripts are taken modulo n.

Theorem 8. The graph $P(n, k)$ is arbitrarily distance antimagic.

Proof. It is sufficient to provide a distance antimagic labeling of $P(n, k)$. We define a lebeling $f: V \rightarrow\{1,2, \cdots, 2 n\}$ as follows:

$$
\begin{gathered}
f\left(u_{i}\right)=2 i-1, \quad 1 \leq i \leq n \\
f\left(v_{i}\right)= \begin{cases}2 & \text { if } i=1 \\
2(n-i+2) & \text { if } 2 \leq i \leq n\end{cases}
\end{gathered}
$$

The weights of vertices are as follows:

$$
\begin{gathered}
w_{f}\left(u_{i}\right)= \begin{cases}2(n+i+1) & \text { if } 1 \leq i \leq n-1, \\
2 n+2 & \text { if } i=n\end{cases} \\
w_{f}\left(v_{i}\right)= \begin{cases}2 n-2 i+7 & \text { if } 1 \leq i \leq k+1, \\
4 n-2 i+7 & \text { if } k+2 \leq i \leq n-k+1, \\
6 n-2 i+7 & \text { if } n-k+2 \leq i \leq n, k \geq 2 .\end{cases}
\end{gathered}
$$

It is easy to see that the labels of the vertices and the weights of the vertices are distinct. By Proposition 1 the labeling f is an arbitrarily distance antimagic labeling.

3 Join of Graphs

Theorem 9. For $r, k \in \mathbb{N}, n, m \geq 4$, graph $r P_{n}+k P_{m}$ is distance antimagic.
Proof. The proof follows from Theorem 6 and Theorem 2.
Theorem 10. The graphs $r P_{n}+K_{1}, r P_{n}+K_{2}$ and $r P_{n}+K_{3}$ are distance antimagic for $n \geq 4$ and $n \neq 5$.

Proof. The proof follows from Theorem 6 and Theorem 3.
Theorem 10 also holds for $n=2$. Thus we have the following corollary.
Corollary 1. [5] The graph $G=r K_{2}+K_{1}$ is distance antimagic.
Theorem 11. The graph $H_{4, n_{1}}+H_{4, n_{2}}$ is distance antimagic.
Proof. From Theorem 7, the highest vertex weight is $\leq 4 n-8$ and the lowest vertex weight attained is at least 8 . We have,

$$
8+\frac{n_{2}\left(n_{2}+1\right)}{2}+n_{1} n_{2}>4 n_{2}-8+\frac{n_{1}\left(n_{1}+1\right)}{2}+4 n_{1}
$$

Fig. 3. Distance antimagic labeling of $3 P_{5}+K_{1}$

$$
\Rightarrow 16+\left(\frac{n_{2}\left(n_{2}+1\right)}{2}-\frac{n_{1}\left(n_{1}+1\right)}{2}\right)+n_{1} n_{2}-4 n_{2}-4 n_{1}>0
$$

Thus the result follows.
Theorem 12. The graph $P(n, k)+H_{4, m}$, with $m, n \geq 5, m \neq 6$, is distance antimagic.

Proof. By Theorem 7 and Theorem $8, H_{4, m}$ and $P(n, k)$ are arbitrarily distance antimagic. Let f_{1} and f_{2} be the arbitrarily distance antimagic labeling of $H_{4, m}$ and $P(n, k)$ respectively. The highest vertex weight under f_{1} for $H(4, m)$ is at most $4 m-10$ and the lowest weight is at least 8 . The highest weight in $P(n, k)$ is at most $5 n+3$ and the lowest weight is at least 12 . We have the following two cases:

Case 1: $2 n \leq m$
From inequality (2) we have

$$
\begin{gathered}
12+\frac{m(m+1)}{2}+2 m n>4 m-10+\frac{2 n(2 n+1)}{2}+8 n \\
\Rightarrow 2 m n-4 m-8 n+22>0 \\
\Rightarrow m(2 n-4)-8 n+22>0
\end{gathered}
$$

as $n \geq 5$.

Case 2: $2 n>m$.
From inequality (2) we have

$$
\begin{gathered}
8+\frac{2 n(2 n+1)}{2}+2 m n>5 n+3+\frac{m(m+1)}{2}+3 m \\
\Rightarrow 2 m n-5 n-3 m+5>0 \\
\Rightarrow 2 n\left(m-\frac{5}{2}\right)-3 m+5>0
\end{gathered}
$$

Since $n \geq 3$ and $m \geq 5$, this equality holds. Hence by Proposition $2, P(n, k)+$ $H_{4, m}$ is distance antimagic. This completes the proof.

4 Conclusion and scope

In this paper, we have obtained arbitrarily distance antimagic labeling for the graphs $r P_{n}$, generalised Petersen graph $P(n, k)$ for $n \geq 5$, Harary graph $H_{4, n}$ for $n \neq 6$ and have also proved that the join of these graphs is distance antimagic. The following problems are remain open:

Problem 1: Characterize graphs which are distance antimagic.
Problem 2: If G and H are distance antimagic, is $G+H$ distance antimagic?

Acknowledgement

The last two authors are thankful to the Department of Science and Technology, New Delhi, for its support through the Project No. SR/S4/MS-734/11. The authors are thankful to the referees for their critical comments and suggestions which enabled us to improve the presentation substantially.

References

1. S. Arumugam, D. Froneck and N. Kamatchi, Distance Magic Graphs-A Survey, J. Indones. Math. Soc. Special Edition (2011), 11-26
2. S. Arumugam and N. Kamatchi, Distance antimagic graphs, J. Combin. Math. Combin. Comput., 84 (2013), 61-67.
3. J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics (DS \#6), 2014, 1-384.
4. A. K. Handa, A. Godinho, T. Singh and S. Arumugam, Distance Antimagic Labeling of the Join of Two Graphs (communicated).
5. N. Kamatchi, Distance Magic and Distance Antimagic Labeling of Graphs, Ph.D. Thesis (2012), Kalasalingam University, Tamil Nadu, India.
6. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355.
7. D. B. West, Introduction to Graph Theory, Prentice Hall 1996, 2001.
8. V. Vilfred, Σ-labelled graph and circulant graphs, Ph.D. Thesis (1994), University of Kerala, Trivandrum, India.

[^0]: * Also senior lecturer in mathematics at Padre Conceicao College of Engineering.

