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Abstract

In this paper we consider the problem to reconstruct a k-uniform hypergraph from its line graph.
In general this problem is hard. We solve this problem when the number of hyperedges containing
any pair of vertices is bounded. Given an integer sequence, constructing a k-uniform hypergraph
with that as its degree sequence is NP-complete. Here we show that for constant integer sequences
the question can be answered in polynomial time using Baranyai’s theorem.
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1 Introduction

LetX = {x1, x2, ..., xn} be a finite set. A hypergraph onX is a family E = {E1, E2, . . . , Em} of non-empty
subsets of X . Elements of X are called the vertices, while those of E are called the edges of H .

A hypergraph H = (X,E) is said to be k-uniform if E ⊂
(

X
k

)

, the set of all k-subsets of X , where
k ≥ 2. A hypergraph H is said to be linear if every pair of distinct vertices of H is in at most one edge
of H . A 2-uniform linear hypergraph is called a graph.

Definition 1.1. The line graph of a hypergraph H = (X,E), denoted by L(H), is the graph where
V (L(H)) = E and E(L(H)) is the set of all unordered pairs {e, e′} of distinct elements of E such that
e ∩ e′ 6= φ in H.

We denote the set of line graphs of k-uniform hypergraphs and k-uniform linear hypergraphs by Lk

and Ll
k respectively.

For a graph G, we shall denote its vertex set by V (G), while the edge set will be denoted by E(G).
Degree of a vertex is the number of edges that contain that vertex. The degree of an edge xy is defined
to be the number of distinct triangles in G containing the edge. The minimum edge degree in the graph
is denoted by δe(G) or simply δe. For W ⊂ V (G), N(W ) denotes the subset of vertices in G which are
adjacent to every vertex in W . A clique in G refers to both a set of pairwise adjacent vertices and the
corresponding induced complete subgraph. The size of a clique is the number of vertices in the clique.

In this paper we consider the problem of reconstruction of hypergraphs when partial information
about its structure is given. For simple graphs these questions are well studied.

If the degree sequence of the graph (degree of every vertex as a tuple) is specified then there are well
known characterizations. In particular the Havel-Hakimi algorithm ([9, 8]) or Erdös Gallai inequalites
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([7]) give a good characterization. In the book [13] more than eight different characterizations are given.
For hypergraphs this problem is very hard. In [5, 6] it was shown that this problem is NP-Complete by
reducing it to a problem related to the 3-partition problem. It is unlikely that a ‘good’ characterization for
this problem exists. In Section 3, we give a solution for characterizing the degree sequence of hypergraphs
when all the degrees are constant. The solution uses an integral version of max-flow min-cut theorem.
The problem of characterizing the class of graphs Lk has been studied for a very long time. Beineke [2] in
his classical work on line graphs characterized the class Ll

2 by a finite list of forbidden induced subgraphs
(finite characterization). This was later expanded upon by Bermond and Meyer [4] who obtained a finite
characterization for the class L2 (intersection graphs of multigraphs). Lovász [12] showed that for k ≥ 3
the class Ll

k has no finite characterization. Niak et al. [16] obtained a finite characterization for the
set of graphs in Ll

3 with δ ≥ 69., where δ represents the minimum vertex degree in a graph. This was
further improved by Skums et al. [17] who obtained a finite characterization for graphs in Ll

3 with δ ≥ 16.
Metelsky [15] proved that for k ≥ 4 and any positive integer a, the set of graphs in Ll

k with δ ≥ a has no
finite characterization.

For a hypergraph H = (X,E) and z ∈ X , the degree dH(z) of z is defined to be the number of edges of
H containing z, the maximum degree of the hypergraph H is denoted by ∆(H) = max

z∈X
dH(z). Similarly,

for a pair of vertices {x, y} ⊂ X , we define the pair degree dH({x, y}) to be the number of edges in H

containing the pair {x, y}. We denote the maximum pair degree inH by ∆2(H) = max{x,y}⊂X dH({x, y}).
∆2(H) is called the multiplicity of the hypergraph H . A hypergraph is linear if ∆2(H) = 1. Denote the

set of intersection graphs of k-uniform hypergraphs with ∆2(H) ≤ p by L
(p)
k . Observe that for p > 2,

Ll
k ⊂ L

(2)
k ⊂ · · · ⊂ L

(p)
k .

In Section 2 we prove the following main theorem:

Theorem 1.1. There is a polynomial f(k, p) of degree at most 4 with the property that, given any pair
k, p, there exists a finite family F(k, p) of forbidden graphs such that any graph G with minimum edge-

degree at least f(k, p) is a member of L
(p)
k if and only if G has no induced subgraph isomorphic to a

member of F(k, p).

2 Reconstructing Hypergraphs from line graphs

Lemma 2.1. If G ∈ L
(p)
k then the G does not contain a k + 1 claw.

Proof. Let H = (X,E) be a k-uniform hypergraph with ∆2(H) ≤ p such that G = L(H). Let
〈x; y1, y2, . . . , yr〉 be a claw in G. If x = {x1, x2, . . . , xk} ∈ E, then x ∩ yi 6= φ for every i = 1, 2, . . . , r.
Since each distinct pair yi, yj are non-adjacent in G, yi∩yj = φ in E. Therefore it follows that r ≤ k.

Figure 1 and Figure 2 illustrates the above lemma. Note that the hyperedge 0 has k + 1 vertices and
hence the hypergraph fails to be k-uniform.

1 2 k k+1.  .  .

0

Figure 1

Lemma 2.2. If G ∈ L
(p)
k and a, b ∈ V (G) such that ab 6∈ E(G), then |N({a, b})| ≤ pk2 (where N({a, b}

denotes the set of vertices adjacent to both a and b).
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Figure 2

Proof. Let H = (X,E) be a k-uniform hypergraph with ∆2(H) ≤ p such that G = L(H). Let a =
{a1, a2, . . . , ak}, b = {b1, b2, . . . , bk} ∈ E and a ∩ b = φ. Now for every v ∈ N({a, b}), v ∩ a, v ∩ b 6= φ in
E. Therefore there is an ai ∈ a and bj ∈ b such that the pair {ai, bj} ⊂ x in E. The number of such
pairs is k2 and given that each pair can appear in at most p edges, the result follows. See Figure 3 and
Figure 4.

.  .  .

a b

1 2 t−1 t

Figure 3

Next we prove the following lemma, which says that “large cliques” (Figure 5a) in the line graph come
from structures like Figure 5b in the hypergraph.

Lemma 2.3. Let G ∈ L
(p)
k such that G = L(H), H = (X,E). If K is a clique of size at least pk2 + (p−

2)k + 2 in G, then there is an x ∈ X such that x ∈ v for every v ∈ K.

Proof. Let x = {x1, x2, . . . , xk} ∈ E be a vertex in K. Since K is a clique, every vertex in K contains
at least one element of x. Now using a pigeon hole argument, given that |V (K)| ≥ pk2 + (p − 2)k + 2
and p ≥ 1, it follows that there is an xt ∈ x such that xt is in at least kp + 1 vertices of K (including
x). Let L = {v1, v2, . . . vkp+1} be a set of kp+ 1 vertices such that xt ∈ vi for every 1 ≤ i ≤ kp+ 1. Let
y = {y1, y2, . . . , yk} ∈ V (K) \ L such that xt 6∈ y. Since y is adjacent to every vertex in L, y ∩ vi 6= φ for
every i. Now for each i, the pair xt, yi can appear in at most p edges and the number of such pairs is k.
Hence it follows that a pair xt, yl appears at least p+ 1 vertices of L.

Lemma 2.4. Let G ∈ L
(p)
k and K be a maximal clique of size at least pk2 + (p − 2)k + 2. If v ∈ V (G)

such that v 6∈ K, then v can be adjacent to at most pk vertices in K.

Figure 6 illustrates this lemma.

Proof. Let G ∈ L
(p)
k such that G = L(H), H = (X,E). Since |V (K)| ≥ pk2 + (p − 2)k + 2, by Lemma

2.3 there is an x ∈ X such that x ∈ v for every v ∈ K. Suppose y 6∈ K is adjacent to pk + 1 vertices
in K then using a similar argument as in the previous proof it follows that x ∈ y. This contradicts the
maximality of K.

Next we define the following three forbidden families.
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Figure 4

"large" clique

(a)
(b)

Figure 5

1. F1(p, k) denote the set of graphs G of order pk2 + 3 with two non-adjacent vertices u, v such that
N({v, w}) = V (G) \ {v, w},

2. F2(p, k) denote the set of graphs G of order pk2 + (p − 2)k + 3 containing a maximal clique K of
size pk2 + (p− 2)k + 2 and a v 6∈ K such that v is adjacent to at least pk + 1 vertices of K,

3. F3(p, k) denote the set of graphs G of order less than 2(pk2 + (p − 2)k + 2) containing a pair of
distinct maximal cliques K1,K2 of size pk2 + (p− 2)k + 2 such that |V (K1) ∩ V (K2)| ≥ p+ 1.

Let F(p, k) = F1(p, k)
⋃

F2(p, k)
⋃

F3(p, k)
⋃

{k + 1-claw}.

Lemma 2.5. If G ∈ L
(p)
k , then G does not contain an induced subgraph from the set F(p, k).

Proof. Suppose G1 ∈ F1(p, k) is an induced subgraph of G. Let x, y be non-adjacent vertices in G1 such
that NG1

({x, y}) = V (G1) \ {x, y}. Then it follows that

|NG({x, y})| ≥ pk2 + 1.

Since xy 6∈ E(G), this contradicts Lemma 2.2.
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a b

Figure 7: F1(p, k)

Let G2 ∈ F2(p, k) be an induced subgraph of G. Let K be a maximal clique of size pk2 +(p− 2)k+2
in G2 and let w ∈ V (G2) \ K such that w is adjacent to at least pk + 1 vertices of K. There exists a
maximal clique K ′ in G such that K ⊂ K ′. Since |K ′| ≥ pk2 + (p− 2)k + 2, by Lemma 2.3 there exists
a x ∈ X such that x ∈ v for every v ∈ K ′. Now since w 6∈ K and both K and K ′ are maximal cliques, it
follows that w 6∈ K ′. Further w is adjacent to at least pk2 +1 vertices of K ′ this contradicts Lemma 2.4.

Let G3 ∈ F3(p, k) be an induced subgraph of G. Let K1,K2 be maximal cliques in G3 of order
pk2 + (p− 2)k + 2 such that |V (K1) ∩ V (K2)| ≥ kp+ 1. There exists maximal cliques K ′

1,K
′
2 in G such

that K1 ⊂ K ′
1 and K2 ⊂ K ′

2. By Lemma 2.3 there exists x1, x2 ∈ X such that x1 ∈ v for every v ∈ K1

and x2 ∈ v for every v ∈ K2. Sine K ′
1,K

′
2 are distinct maximal cliques in G it follows that x1 6= x2.

Therefore if |V (K ′
1) ∩ V (K ′

2)| ≥ |V (K1) ∩ V (K2))| ≥ p + 1 it follows that the pair x1, x2 appears in at
least p+ 1 distinct vertices in G which is a contradiction (see the following figure).

"large" clique "large" clique

1

t

.

.

.

size of intersection = t > p

 1 t. . .

To show the other direction of the Theorem, we use the idea of “clique partition” for line graphs due

to Krausz. We present a characterization of the members of the family L
(p)
k which is a generalization of

the criterion described in Berge [3].

Proposition 2.1. A graph G ∈ L
(p)
k if and only if there is a collection of cliques K : K1,K2, . . . ,Kr of

G such that;
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Figure 8: F2(p, k)

"large" clique "large" clique
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size of intersection = t > p

Figure 9: F3(p, k)

(i) Every edge belongs to at least one member of K.

(ii) Every vertex belongs to at most k members of K.

(iii) If Ki,Kj are distinct elements of K, then |V (Ki) ∩ V (Kj)| ≤ p.

Proof. Let G be a graph and K : K1,K2, . . . ,Kr be a collection of cliques in G satisfying (i)-(iii).
For every v ∈ V (G), let g(v) denote the number of cliques in K containing the vertex v. From (ii)
g(v) ≤ k. Construct K′ from K by adding k − g(v) copies of {v}, for every v ∈ V . For x ∈ V , define
Ex = {K ∈ K′ | x ∈ K}. Let H = (X,E) be the hypergraph with X = K′ and E = {Ex | x ∈ V }. Since
each Ex has cardinality k, it follows that H is k-uniform. Suppose ab is an edge in G, from (i) the edge ab
appears in at least one element of K, therefore Ea ∩Eb 6= φ. Finally for every distinct pair K1,K2 ∈ K′,
|V (K1)wcapV (K2)| ≤ p, therefore the pair K1,K2 appear in at most p edges of H . Hence ∆2(H) ≤ p.

For the converse, let H = (X,E) be a k-uniform hypergraph with ∆2(H) ≤ p. For every x ∈ X define
Ex = {e ∈ E | x ∈ E}. Let K be the collection of all such sets Ex which are non-empty. Let G be
the intersection graph of H . It is clear that K defines a collection of cliques in G. We shall show that
this collection satisfies (i)-(iii). Let e1, e2 ∈ E such that e1e2 is an edge in G. Hence e1 ∩ e2 6= φ. Let
a ∈ e1 ∩ e2, then the edge e1e2 appears in the clique Ea ∈ K this proves (i). To show (ii), let x ∈ V (G).
Let {x1, . . . , xk} ∈ E represent the edge corresponding to x. Then the vertex x appears in exactly k

cliques Ex1
, . . . , Exk

∈ K. Finally if e1, e2 ∈ Ea ∩Eb, then a, b ∈ e1 ∩ e2 and since the pair a, b can occur
in at most p elements of E, it follows that |Ea ∩ Eb| ≤ p this proves (iii).

Now we complete the proof of Theorem 1.1. For Lemmas 2.6 - 2.9 we will assume that G is a
graph with at least one edge which has no induced subgraph isomorphic to a member of F(p, k) and the

minimum edge-degree of G is at least f(k, p) = pk3 + (p− 3)k + 1. We then show that G ∈ L
(p)
k . Define

K to be the set of all maximal cliques in G of size at least pk2 + (p− 2)k + 2.

Lemma 2.6. Every edge in G occurs in a clique of size at least pk2 + (p− 2)k + 2.

Proof. Let x, y be an edge in G. Let 〈x; y, w1, w2, . . . , wr〉 be a maximal claw at x containing y.

6



Case 1. r > 0: Let 〈x;w1, w2, . . . , wr, v1, v2, . . . , vs〉 be a maximal claw at x containing 〈x;w1, w2, . . . , wr〉
as a subclaw. If one of vi is y then s = 1. Since G does not contain a k + 1-claw r + s ≤ k. Now let
vs = z. Consider N({x, z}). From our assumption about the minimum edge degree in G, |N({x, z})| ≥
f(p, k) = pk3 + (p − 3)k + 1. Now some vertices in N({x, z}) may be adjacent to vertices in the set
{w1, w2, . . . wr , v1, v2 . . . vs−1} we shall discard these. Since G does not contain any induced subgraph
from the set F1(p, k), it follows that |N({z, wi})| ≤ pk2 and |N({z, vj})| ≤ pk2, 1 ≤ i ≤ r, 1 ≤ j ≤
s − 1. Hence there are at least f(p, k) − (k − 1)(pk2 − 1) − 1 = pk2 + (p − 2)k − 1 (if z = y) or
f(p, k)− (k− 1)(pk2 − 1) = pk2 + (p− 2)k (if z 6= y) vertices in N({x, z}) which are not adjacent to any
vertex in the set {w1, w2, . . . wr, v1, v2 . . . vs−1}. Since 〈x;w1, w2, . . . , wr, v1, v2, . . . , vs〉 is a maximal claw,
these vertices together with x, y and z must form a clique. Hence we have constructed a clique with at
least pk2 + (p− 2)k + 2 vertices.

Case 2. r = 0: Suppose that 〈x; y〉 is the maximum size claw at x in this case N(x) is a clique of size at
least pk3+(p−3)k+1. Since p ≥ 1, k ≥ 2, it follows that |N(x)| ≥ pk3+(p−3)k+1 ≥ pk2+(p−2)k+2, we
are through. Otherwise let 〈x; y1, y2, . . . yr〉 be a maximal claw at x. Then repeating the same argument
as in case 1 for the claw 〈x; y1, y2, . . . yr〉 we obtain a clique of size at least pk2 + (p− 2)k + 2 containing
the edge xy.

Lemma 2.7. If K ∈ K and x 6∈ K, then x is joined to at most pk vertices of K.

Proof. If there is a vertex x ∈ V (G) − V (K) such that x is joined to at least kp + 1 vertices in K then
G will contain a member of F2(p, k) as an induced subgraph.

Lemma 2.8. Every vertex of G is in at most k distinct members of K.

Proof. Suppose that the result is not true and let x be a vertex of G which is in k + 1 distinct elements
K1, . . . ,Kk+1 of K. Now let a1 ∈ K1 and a1 6= x. By Lemma 2.7, it follows that a1 is joined to at most
pk− 1 vertices of K2 other than x. Now since |K1∩K2| ≤ p, there exists an a2 ∈ K2 such that 〈x; a1, a2〉
is a 2-claw. Suppose that we have constructed an r-claw 〈x; a1, . . . , ar〉, r ≤ k, in G such that ai ∈ Ki.

Then each ai is joined to at most pk − 1 vertices distinct from x of Kr+1 and

∣

∣

∣

∣

Kr+1

⋂

(

r
⋃

i=1

Ki

)∣

∣

∣

∣

≤ rp.

Now |Kr+1| ≥ pk2 + (p − 2)k + 2 > r(kp − 1) + r(p − 1) + 1, hence there exists an ar+1 ∈ Kr+1 such
that 〈x; a1, . . . , ar+1〉 is an (r+1)-claw in G. Taking r = k, we get a (k+1)-claw in G, contradicting the
hypothesis.

Lemma 2.9. If K1,K2 ∈ K then |V (K1) ∩ V (K2)| ≤ p.

Proof. If there exist K1,K2 ∈ K such that |V (K1) ∩ V (K2)| ≥ p + 1 then G will contain a member of
F3(p, k) as an induced subgraph.

Proof of Theorem 1.1: The necessity that G has no induced subgraph isomorphic to F(p, k) follows

from Lemma 2.5. The sufficiency that G ∈ L
(p)
k follows from Lemmas 2.6, 2.8, 2.9 and Proposition 2.1.

3 Degree sequence of hypergraphs

In this Section, we consider the problem to characterize the degree sequence (d1, d2, . . . , dn) of k-uniform
hypergraphs. This problem was shown to be NP-complete in [5, 6]. We consider the simple case when all
the degrees are same. That is, when does (d, d, . . . , d) correspond to the degree sequence of a k-uniform
hypergraph on [N ]. By double counting tuples (i, E) where i ∈ E, and E is an edge in the hypergraph, it

follows that
∑N

i=1 di is divisible by k. We show using network flows that this necessary condition is also
sufficient if the degrees are constant. This proof is adapted from the proof of Baranyai’s theorem ([1]).

Let P :=
(

[N ]
k

)

denote the sets of size k of the set [N ] and N ≥ k. Let M =
k(Nk)
L

. We will partition
P into M disjoint collections of k sets of same size. Let the collection be labelled as S1,S2, . . . ,SM . Let
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1

1
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Figure 10: The flow network used to construct the hypergraph.

L = LCM(N, k). Number of k sets in each class Si is
L
k
and each element j ∈ [N ] appears in a k-set in

each Si exactly
L
N

times. Note that M =
k(Nk)
L

and it is an integer.
The existence of such a partition when k | N is Baranyai’s theorem and all known proofs of Baranyai’s

theorem use integrality of network flow (or an equivalent theorem).
We prove the existence of the required partition by induction on ℓ the number of alphabets. In

particular we would show the following Theorem:

Theorem 3.1. For all [ℓ], ℓ ≤ N there exists a collection {S1,S2, . . . ,SM} of P such that a set T ⊂ [ℓ]
appears

(

N−ℓ

k−|T |

)

times.

Note that our desired partition corresponds to ℓ = N .

Proof.
Base case: [ℓ] = 1.
In this case the empty set appears

(

N−1
k

)

times and the singleton {1} appears
(

N−1
k−1

)

times. it is easy to

see that this possible. Each Si contains the empty set 1
M

(

N−1
k

)

times and {1}, 1
M

(

N−1
k−1

)

times.
Induction hypothesis: The statement holds true for [ℓ], ℓ < N .
Induction step: True for [ℓ+ 1]
Suppose the partition satisfying the statement for ℓ already exist. We will select some of the sets and
add the element ℓ+1 such that the statement still holds. These sets will be selected using the integrality
of the network flow. We first construct a Network as follows. Construct a directed bipartite multi graph
with partitions A and B as follows. The vertices in A are the classes S1 to SM . The vertices in B are
the subsets of [ℓ] of size at most k. There are r directed edges from Si to the set T if the set T appears
in Si r-times. The capacity of each of these edges is 1. There are two other special vertices source s and
sink t. There is an edge from source s to every vertex in Si with capacity L

N
. Every vertex T in B is

connected to the sink t with capacity
(

N−1−ℓ

k−|T |−1

)

. This network has integral flows and it has a min cut

given by the edges out of source s and it has another min cut that contains all edges which go to sink t.
Capacities of both these cuts is ML

N
=

(

N−1
k−1

)

. By the integral version of the max flow min cut Theorem
there is an integral flow where every edge out of source s and every edge into sink t is saturated. The
edges between A and B will have flow value 0 or 1. Now we construct the collection {S ′

i} for [ℓ+1] given
the collection {Si} for [ℓ].

If T is an element of Si with multiplicity r and j of those edges have flow value 1 then we add the
element ℓ+ 1 to j of the sets T in Si. This shows that the set T ∪ {ℓ+ 1} appears in the collection {S ′

i}
(

N−1−ℓ
k−1−|T |

)

times as required. Any set T that does not contain ℓ+ 1 appears

(

N − ℓ

k − |T |

)

−

(

N − ℓ− 1

k − 1− |T |

)

=

(

N − ℓ− 1

k − |T |

)

times.

This proves the induction step and completes the proof.
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Corollary 3.1. (d, d, . . . , d) is the degree sequence of a k-regular hypergraph on vertex set [N ] if and only
if k | dN .

Proof.
Necessity: Follows from double counting (i, E), i ∈ E.
Sufficiency: By Theorem 3.1 for ℓ = N we get a partition S1,S2, . . . ,SM} of P . Since d | kN , d is a

multiple of L
N
. We take the edge set of the hypergraph as the union ∪

dN

L

i=1Si. In this hypergraph every
vertex appears exactly in d edges.

It may be noted that flow algorithm runs in polynomial time. Hence we can find the partition of
Theorem 3.1 in polynomial time and also the required hypergraph in polynomial time.

The Corollary 3.1 be considered as a special case of t− (v, k, λ) design. It would be interesting if the
technique could be extended to include more general cases. The design problem was solved by Keevash
in [10] using multiple ideas.
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